- Techniques Commerciales
- Pratiques professionnelles
- Mathématiques Appliqués
- Economie d entreprise
- Economie générale
- Comptabilité
- Informatique
- Mathématiques Appliqués
- Economie d entreprise
- techniques-comptables
- pratiques professionnelles
- Economie générale
- Informatique
- GSI
- Fiscalité
- Comptabilité
- TP GSI
- TP fiscalité
- Math appliquée
- Economie d entreprise
- Economie générale
- Droit
- Techniques Comptables
- Pratiques professionnelles
- Mathématiques Appliqués
- Economie d entreprise
- Economie générale
- Techniques Commerciales
- Pratiques professionnelles
- Mathématiques Appliqués
- Economie d entreprise
- Comptabilité générale
- Comptabilité Analytique
- Economie générale
- Mathématiques Appliquées
- Economie d entreprise
- Comptabilité générale
- Sciences économiques et sociales
- GSI
- Fiscalité
- Comptabilité
- TP GSI
- TP fiscalité
- Math appliquée
- Economie d entreprise
- Economie générale
- Droit
- Mathématiques Appliqués
- Economie d entreprise
- techniques-comptables
- pratiques professionnelles
- Economie générale
- Informatique
- Mathématiques Appliqués
- Economie d entreprise
- techniques-comptables
- pratiques professionnelles
- Economie générale
- Informatique
CHAPITRE : ANALYSE DU RESULTAT PAR VARIABILITE
TELECHARGEZ LE COURS COMPLET DE COMPTABILITE Tle SES EN CLIQUANT ICI
Téléchargez le cours de DROIT Tle STT & SES en cliquant ici
Téléchargez le cours d'HISTOIRE Tle STT & SES en cliquant ici
Téléchargez le cours d'ECM Tle STT & SES en cliquant ici
Téléchargez le cours de GEOGRAPHIE Tle STT & SES en cliquant ici
Téléchargez le cours d'anglais Tle STT & SES en cliquant ici
Objectifs :
- Connaitre le comportement des charges ;
- Présenter le tableau d’exploitation différentiel (TED)
- Présenter la marge du coût variable et le seuil de rentabilité.
- Définition des termes
La structure : c’est l’ensemble des moyens matériels et humains permanant mis en œuvre pour la production.
Les charges : ce sont les consommations définitives, elles peuvent se comporter de plusieurs manières (charges variables, charges fixes et charges sémi-variables)
Niveau d’activité ou unité de production : c’est la quantité produite dans un atelier donné. Il est noté x.
- L’analyse différentielle du résultat (TED)
- La variabilité des charges
Dans cette analyse, les charges se décomposent en charges variables et fixes.
- La charge variable
C’est une charge qui varie en fonction des quantités à produire. L’équation des charges variables est : Y1 = ax avec x : le niveau d’activité et a : le coût variable unitaire.
- La charge fixe ou charge de structure
C’est une charge qui ne change pas en fonction des quantités produites ; l’équation des charges fixes est : Y2 = b avec b (les charges fixes).
A l’échelle unitaire, la charge fixe diminue e l’équation de la forme est : Y = b/x ; avec b (le montant des charges fixes) et x (la quantité produite)
- Les charges sémi-variables
Les charges semi-variables sont des charges où une partie est variable et l’autre fixe. L’équation est : Y = ax + b avec ax (la partie variable) et b (la partie fixe)
- Changement de structure
Lorsqu’on veut accroitre considérablement le niveau d’activité, les charges fixes sont obligées d’augmenter par l’acquisition du nouveau matériel ou bien le développement de l’encadrement.
Le but d’analyse du résultat par cette méthode nous permet de déterminer la marge sur cout variable et le seuil de rentabilité par la relation M/VA = CF. l’équation de la marge est : Y1 = ax avec x : le chiffre d’affaires et a : le coefficient de la marge sur coût variable et celle des charges fixes est : Y2 = b avec b (les charges fixes) d’où : Y1 = Y2 → ax = b
- La présentation du TED
- Cas d’une entreprise commerciale
- La présentation de toutes les marges
ELEMENTS |
COUTS (calculs) |
MARGES (montants) |
pourcentage |
CA HT |
A |
|
|
RRR accordées |
(a) |
|
|
retour de M/ses |
(b) |
|
|
CA HT Net |
B = A - a - b |
B |
100 |
COUT D'ACHAT |
|
|
|
achat M/ses |
c |
|
|
RRR obtenus |
(d) |
|
|
retour des M/ses |
(e) |
|
|
variation de stock de M'ses |
± f (SI - SF) |
|
|
Frais variable d'achat |
g |
|
|
cout variable d'achat |
C = c –d –e ±f +g |
(C) |
|
marge/CV d’achat |
|
D = B - C |
(D /B) * 100 |
COUT DE DISTRIBUTION |
|
|
|
achat d'emballage |
h |
|
|
variation de stock d'emballage |
± i (SI -SF) |
|
|
frais variable de distribution |
j |
|
|
cout variable de distribution |
E |
(E) |
|
marge /CV de distribution |
|
F = D -E |
(F/B)* 100 |
ADMINISTRATION |
|
|
|
frais variables administratifs |
|
(k) |
|
Marge/CV ad. |
|
G |
(G/B)*100 |
Charges fixes |
l |
|
|
Produits divers |
(m) |
|
|
Charges fixes nettes |
H |
(H) |
|
résultat |
|
I |
(I/B)*100 |
NB : lorsque les frais administratifs sont fixes, ils sont inscrits dans le calcul des charges fixes. La vente d’emballage fait partie des autres produits.
- En faisant ressortir le cout variable, la marge/CV, le cout fixe et le résultat
ELEMENTS |
COUTS (calculs) |
MARGES (montants) |
pourcentage |
CA HT |
A |
|
|
RRR accordées |
(a) |
|
|
retour de M/ses |
(b) |
|
|
CA HT Net |
B = A - a - b |
B |
100 |
COUT D'ACHAT |
|
|
|
achat M/ses |
c |
|
|
RRR obtenus |
(d) |
|
|
retour des M/ses |
(e) |
|
|
variation de stock de M'ses |
± f (SI - SF) |
|
|
Frais variable d'achat |
g |
|
|
cout variable d'achat |
C = c –d –e ±f +g |
|
|
COUT DE DISTRIBUTION |
|
|
|
achat d'emballage |
h |
|
|
variation de stock d'emballage |
± i (SI -SF) |
|
|
frais variable de distribution |
j |
|
|
CV distribution |
D |
|
|
ADMINISTRATION |
|
|
|
frais variables administratifs |
k |
|
|
CV administratif |
E |
(E) |
|
M/CV |
|
F |
(F/B)*100 |
Charges fixes |
l |
|
|
Produits divers |
(m) |
|
|
Charges fixes nettes |
G |
(G) |
|
résultat |
|
H |
(H/B)*100 |
- Cas d’une entreprise industrielle
ELEMENTS |
COUTS (calculs) |
MARGES (montants) |
pourcentage |
CA HT |
A |
|
|
RRR accordés |
(a) |
|
|
retour de produits finis |
(b) |
|
|
CA HT Net |
B = A - a - b |
B |
100 |
coût variable d'approv |
|
|
|
achat Matières premières |
c |
|
|
RRR obtenus |
(d) |
|
|
retour des Matières premières |
(e) |
|
|
variation de stock de M.P. |
± f (SI - SF) |
|
|
frais variable d'achat |
g |
|
|
CV d'achat de M.P. |
C |
(C) |
|
marge/CVa de M. P. |
|
D = B - C |
(D/B) * 100 |
cout de production |
|
|
|
achat d'emballage |
h |
|
|
variation de stock d'emballage |
± i (SI -SF) |
|
|
variation de stock PF |
± j (SI -SF) |
|
|
production immobilisée (72) |
(k) |
|
|
Frais variable de production |
l |
|
|
CV de production |
E |
(E) |
|
marge / CV de Production |
|
F |
(F/B)* 100 |
distribution |
|
|
|
frais variable de distribution |
m |
(m) |
|
marge / CV de distribution |
|
(G) |
(G/B)*100 |
administration |
|
|
|
frais variable administration |
n |
(n) |
|
M/CV |
|
H |
|
CHARGES FIXES |
o |
|
|
Produits fixes |
(p) |
|
|
Charges fixes nettes |
I |
(I) |
|
résultat |
|
J |
(J/B)*100 |
Remarque :
- Les charges sont constituées des charges fixes d’approvisionnement, de distribution, de production
- Les produits fixes du TED sont représentés par production divers du TEF sauf précision contraire.
Application :
Reprenons l’application précédente et déterminons le résultat différentiel
SOLUTION :
- Tableau d’exploitation des charges par variabilité
Eléments |
CV |
CF |
Frais d’achat |
840 000 |
560 000 |
Frais de production |
600 000 |
1 200 000 |
Frais de distribution |
300 000 |
900 000 |
Frais administratif |
- |
1700 000 |
TOTAL |
1740 000 |
4360 000 |
- Tableau d’exploitation différentiel
|
|
MONTANT |
% |
CHIFFRE D'AFFAIRES |
|
30 000 000 |
100 |
Achat de matière 1er |
1 5000 000 |
|
|
Achat d’emballage |
300 000 |
|
|
Variation stock matière 1er |
-100 000 |
|
|
Variation d’emballage |
-50 000 |
|
|
Variation produit finis |
-200 000 |
|
|
Charge variables |
1 740 000 |
|
|
CVT |
16 690 000 |
-16 690 000 |
55,63 |
M/CV |
|
13 310 000 |
44,37 |
CF |
|
-4 360 000 |
14,53 |
|
|
8 950 000 |
29,83 |
- Calcul du seuil de rentabilité (SR)
- Définition :
C’est le chiffre d’affaires pour lequel l’entreprise ne dégage ni bénéfice ni perte.
- Formule :
M/CV = CA – CV SRV = CF / coefficient M/CV SR QTE = SRV / prix unitaire
Tx M/CV = (M'CV / CA) x 100 SR V = (CA x CF) / M/CV
- Point mort = C’est la date à laquelle le chiffre d’affaires critique est réalisé
PM = (SR / CA) x 360 (en jours) PM = (SR / CA) x 12 (en mois)
- Marge de sécurité (MS) : Elle représente le montant du chiffre d’affaires qui peut être supprimé sans entraîner de perte dans l’entreprise.
MS = CA – SR
- Indice de sécurité (IS) : Il faut que le chiffre d’affaires baisse de x% sans que sa rentabilité ne soit mise en cause.
IS = (MS / CA)
NB: Lorsqu’il est demandé en pourcentage, on multiplie par 100.
- Levier opérationnel (LO) : Il exprime le pourcentage de variation du résultat obtenu pour une variation de % du chiffre d’affaires.
LO = 1/IS ou CA/SR
- Représentation graphique :
- Relation M/CV = CF
Ici, nous aurons deux droites : Y1 (marge sur coût variable) et Y2 (charges fixes) ; d’équations respectives :
- Y1 = ax avec : a = taux M/CV et x = CA ;
- Y2 = b avec b : les charges fixes
- Tableau d’exploitation des coordonnées :
X |
0 |
SR |
Y |
0 |
CF |
- Représentation :
- Relation R = M/CV – CF
Ici, nous aurons une seule droite d’équation :
- Y = ax – b avec a : le coefficient de la M/CV, X : le CA et b : la charge fixe
- Tableau d’exploitation des coordonnées :
X |
0 |
SR |
Y |
-CF |
0 |
représentation :
- Relation CT = CA
Ici, nous aurons deux droites : Y1 (chiffre d’affaires) et Y2 (coût total) d’équations respectives :
- Y2 = ax + b ; a = taux des CV et b = charges fixes ;
- Y1 = x avec x = chiffre d’affaires ;
- Tableau d’exploitation des coordonnées :
- Y2 = ax + b
X |
0 |
SRQTE |
Y |
CF |
SRV |
- Y1 = x (représentation)
X |
0 |
SRQTE |
Y |
0 |
SRV |
EXERCICE D’APPLICATION :
Une entreprise prévoit vendre 1 000 000 de bouteilles d’huile de palme à 800 FCFA la bouteille. Les charges fixes sont estimées à 300 000 000 FCFA. Les charges variables d’exploitation s’élèvent à 300 FCFA la bouteille, et celles de distribution à 100FCFA la bouteille.
Travail à faire :
- Déterminer le taux de marge sur coût variable
- Déterminer le seuil de rentabilité
- Déterminer la marge de sécurité
- Déterminer l’indice de sécurité en pourcentage
- Calculer le seuil de rentabilité en quantités
- Déterminer l